A Cognitive Look at Geotechnical Earthquake Engineering (2 PDH)
By: James Shomin

Based on the results of these studies, it is evident that cognitive techniques perform better than, or as well as, the conventional methods used for modeling complex geotechnical earthquake problems. Cognitive tools are having an impact on many geotechnical and seismological operations, from predictive modeling to diagnosis and control.
The hybrid soft systems leverage the tolerance for imprecision, uncertainty, and incompleteness, which is intrinsic to the problems to be solved, and generate tractable, low-cost, robust solutions to such problems. The synergy derived from these hybrid systems stems from the relative ease with which we can translate problem domain knowledge into initial model structures whose parameters are further tuned by local or global search methods. This is a form of methods that do not try to solve the same problem in parallel but they do it in a mutually complementary fashion. The push for low-cost solutions combined with the need for intelligent tools will result in the deployment of hybrid systems that efficiently integrate reasoning and search techniques.
This paper is available for 2 PDH credits towards your PE license Register for Quiz